
Oshani Seneviratne
Associate Director, Tetherless World Constellation

Assistant Professor, Department of Computer Science
Rensselaer Polytechnic Institute, Troy NY USA

Texas A&M Blockchain Day
May 1, 2023

Empowering Decentralization through Smart 
Contracts



2

Key Build Blocks of Blockchain Technologies

Blockchain technologies are built on top of the following: 

2

Cryptographic 
Hashes 
and Identities

Consensus Protocol Ledger aka “Chain” Smart 
Contract



Example (Bitcoin) Transactions

3

Alice

Bob

Carol

David

25 coins

Alice

17 coins

Bob

8 coins

Carol Alice

15 coins

Alice

5 coins25 coins

8 coins

13 coins

Can Alice perform this last transaction?
13 coins < 15 coins



Bitcoin Transactions 

One way to organize a ledger

4

How can we build a currency on top of such a ledger? 

The downside to this 
way of doing things is 
that anyone who 
wants to determine if 
a transaction is valid 
will have to keep 
track of these 
account balances. 



Bitcoin’s way of organizing the ledger
Bitcoin doesn’t use an account-based model.  

5

Bitcoin uses a ledger that just 
keeps track of transactions. 

Transactions specify a number of inputs 
and a number of outputs 

You can think of the inputs as coins being 
consumed (created in a previous 
transaction) and the outputs as coins 
being created 

Why does Alice have to send money 
to herself?

When a new tx is added, how easy is it 
to check if it is valid?



An Actual Bitcoin Transaction

6



Bitcoin Scripting Language

• Has a fixed set of “Op Codes” or instructions:
• A total of 256 – 15 are disabled, 75 are reserved
• Basic functions – arithmetic, conditionals
• Crypto functions – hash functions, signature verifications

• Turing Incomplete
• Does not allow infinite loops
• Advantage: does not run malformed/malicious scripts
• Disadvantage: does not allow for complex logic to build applications on the 

blockchain
• Reverse-Polish Notation

• The operators follow operands, e.g., “1 + 2” is written as “1 2 +”
• Stack-based

• Last-In-First-Out (LIFO)

7



Bitcoin Scripts in Action

• Transaction Input
• Alice needs to get bitcoins 

which she has received from 
various previous transactions.

• Suppose Alice needs to pull 
bitcoins from the following 
transactions which we shall 
name TX(0), TX(1) and TX(2)

8

10 BTC

4 BTC

2 BTC

16 BTC

David

15 coins

Alice



• Transaction Output will have the 
number of bitcoins that Bob will 
possess, post-transaction.
• Any remaining change that is left 

over is sent back to Alice.
• Conditions of a transaction

• TX(Input) > TX(output)
• Transaction fees = TX(Input) –

(TX(output) + Change).
9

Bitcoin Scripts in Action

16 BTC

15 BTC

16 – 15 – (Tx fees) BTC

David

15 coins

Alice



Bitcoin Scripts in Action: Behind the Scenes

10https://www.blockchain.com/btc/tx/11b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939cbaf38

Name of the transaction



Bitcoin Scripts in Action: Behind the Scenes

11https://www.blockchain.com/btc/tx/11b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939cbaf38



Bitcoin Scripts in Action: Behind the Scenes

12https://www.blockchain.com/btc/tx/11b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939cbaf38

Script to ”unlock” the unspent transaction outputs (UTXO)



Bitcoin Scripts in Action

• Alice sends Bob an output which has the scriptPubKey, which 
includes Bob’s address.
• Bob unlocks the input using his signature of scriptSig which 

includes his signature and his public key.
• scriptPubKey = OP_DUP OP_HASH160 <Bob’s public 

address> OP_EQUALVERIFY OP_CHECKSIG
• scriptSig = <Bob’s signature> <Bob’s public key>

13

12 BTC



Bitcoin Scripts in Action: A Game of Locking and 
Unlocking

14

Source: https://www.cryptocompare.com/wallets/guides/bitcoin-transactions-pay-to-address-pay-to-public-key-hash/

Script
<Bob’s signature> <Bob’s public key> OP_DUP OP_HASH160 <Bob’s public address> OP_EQUALVERIFY OP_CHECKSIG



Bitcoin Scripts in Action: Verification

• <Bob’s signature> <Bob’s public key> OP_DUP 
OP_HASH160 <Bob’s public address> 
OP_EQUALVERIFY OP_CHECKSIG
• For OP_DUP pop <Bob’s public key> , duplicate it 

and push it back

15

<Bob’s signature> 

<Bob’s public key> 

<Bob’s signature> 

<Bob’s public key> 

<Bob’s public key> 

<Bob’s signature> 



Bitcoin Scripts in Action: Verification

<Bob’s signature> <Bob’s public key> OP_DUP 
OP_HASH160 <Bob’s public address> 
OP_EQUALVERIFY OP_CHECKSIG
• OP_HASH160 pops <Bob’s public key> runs it 

through SHA256 followed by RIPEMOD160 to get 
<Bob’s public address>

16

<Bob’s public address> 

<Bob’s public key> 

<Bob’s signature> 

• OP_EQUALVERIFY pops the last two elements in the 
stack and check to see if they are equal or not

<Bob’s public key> 

<Bob’s signature> 



Bitcoin Scripts in Action: Verification

<Bob’s signature> <Bob’s public key> OP_DUP 
OP_HASH160 <Bob’s public address> 
OP_EQUALVERIFY OP_CHECKSIG
• OP_CHECKSIG pops <Bob’s public key> and <Bob’s 

signature> and checks their validity.
• This is where the Elliptical Curve Digital Signature 

Algorithm (ECDSA) is used.

17

<Bob’s public key> 

<Bob’s signature> 



Summary of Bitcoin Scripts 

• Stack-based
• Data in the script is enclosed in <>: <sig>, <pubkey>, etc.
• Opcodes: commands or functions

• Arithmetic, e.g., OP_ABS, OP_ADD
• Stack, e.g., OP_DROP, OP_SWAP
• Flow control, e.g., OP_IF, OP_ELSE
• Bitwise logic, e.g., OP_EQUAL, OP_EQUALVERIFY
• Hashing, e.g., OP_SHA1, OP_SHA256
• (Multiple) Signature Verification, e.g., OP_CHECKSIG, OP_CHECKMULTISIG
• Locktime, e.g., OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY

18



Bitcoin’s Scripting Language Limitations

• Lack of Turing completeness: No loops
• Lack of state: Cannot keep internal state.
• Value-blindness: Cannot denominate the amount being sent
• Blockchain-blindness: Cannot access block header values such as 

nonce, timestamp, and previous hash block.

19



Extending Bitcoin Functionality

• Building a protocol on top of Bitcoin:
• Pros:

• Take advantage of the underlying network and mining power.
• Very low development cost.

• Cons:
• No flexibility.

• Build an independent network:
• Pros:

• Easy to add and extend new opcodes.
• Flexibility.

• Cons:
• Need to attract miners to sustain the network.
• Difficult to implement

20



Alternative (Early) Blockchain Applications
• Namecoin:

• Bitcoin fork: Currency NMC 
• Decentralized name registration database: DNS, identities etc

• Colored Coins: 
• On top of Bitcoin
• Allows people to create their own digital currencies

• OmniLayer (formerly Mastercoin)
• On top of Bitcoin
• Distributed exchange, smart property, distributed e-commerce, etc

• OpenBazaar
• On top of Bitcoin 
• Decentralized marketplace

21



Better Blockchain Programming 
Models

22



Smart Contracts

• Programatically enforced state updates
• You can add any functionality you want!

• Can facilitate access to and distribution of funds based on specified 
conditions
• Can create, transfer, and alter arbitrary digital assets
• Interact with other contracts to create robust, interoperable 

applications
• Base layer for the Internet of Value

23



How Smart Contracts Work

24



25Source: https://www.edureka.co/blog/smart-contracts

What are some 
advantages of 
smart contracts?



Vending Machines as a Smart Contract
• Buyer selects an item on the 

screen and agrees to the 
specified payment
• Buyer inputs cash into the 

vending machine
• The machine recognizes the 

payment, confirms its 
validity, and drops the buyer 
what they picked from the 
machine.

26



History of Ethereum
• Russian-Canadian Vitalik Buterin co-founded Ethereum 

when he was 19 years old
• Whitepaper in 2013

• ‘A Next-Generation Smart Contract and Decentralized 
Application Platform’ Ethereum 

• Genesis block July 2015
• Important Concepts

• Blockchain
• Accounts
• Wallets
• Transactions 

• Smart Contracts
• Tokens
• Decentralized Applications

27

Source: https://en.wikipedia.org/wiki/Vitalik_Buterin

Blockchain / 
Distributed ledger

Smart 
Contract



Ethereum Blockchain

• Blockchain as a Fully “Distributed Database”
• Stores data
• Transactions/messages alter the data Ethereum

• The “data” can be any digital asset/token
• Ethereum uses smart contracts to dramatically expand transaction 

capabilities
• What are smart contracts?

• “A set of promises, specified in digital form, including protocols within which the 
parties perform on these promises.” Nick Szabo, 1996

However …. 
• Smart Contracts may not be ‘Smart’ 
• Smart Contracts may not be ‘Contracts’

28



Decentralized Applications (DApps)

• Goal is totally distributed application
• No point of failure
• No censorship
• Totally transparent

• App logic via smart contract
• App data via decentralized storage like Inter-Planetary File System 

(IPFS) or Swarm
• Name resolution via Ethereum Name Service (ENS)
• Messaging via Whisper (decentralized SMS - or message calls 

between applications)
• Backend (or legacy application) integration via Web3 

29



Programming Dapps in Ethereum

• Using a special 
programming language 
called Solidity
• It uses a syntax that 

resembles JavaScript

30

Ethereum platform architecture



Ethereum Under the Hood

• Blocks created faster than BTC and reward is different
• Every 15 seconds
• ~ 2 ETH main reward
• Different mining algorithm, i.e., Keccak 256
• The same ECDSA used to generate public keys

• Blocks keep track of balances – not UTXO like BTC
• Transitioned from Proof of Work to Proof of Stake on Sep 15, 2022

• https://ethereum.org/en/upgrades/merge

31



Gas

• Halting problem: 
• Cannot tell whether or not a program will run infinitely from compiled code 

(infinite loop)
• Solution: charge fee per computational step to limit infinite loops and stop 

flawed code from executing

• Every transaction needs to specify an estimate of the amount of gas 
it will spend
• Essentially a measure of how much one is willing to spend on a 

transaction, even if buggy

32



Gas Cost

• Helps to regulate load on network
• Gas Price

• Current market price of a unit of Gas (in Wei)
• Check gas price here: https://ethgasstation.info
• Gas price is always set before a transaction by user

• Gas Limit
• The maximum amount of Gas user is willing to spend
• All blocks have a Gas Limit (maximum Gas each block can use) 

• Gas Cost
• Used when sending transactions
• Calculated by gasLimit*gasPrice.

33

https://ethgasstation.info/


Each transaction on the public Ethereum network 
has to pay a gas fee

34

More complicated transactions consume more gas, so they cost more.
See ”Gas Burners” for such transactions.



Ethereum Gas Tracker

35https://etherscan.io/gastracker



Miners limited by a global limit on gas per block

36

There’s a limit to how much gas can be consumed in each block, i.e., a limit on 
how many smart contract program statements can be evaluated on each block.
It has been increasing, but at any given time, there’s a limit– currently 30 MWei



Ethereum Lingo
Ether Denominations
• Wei - lowest denomination

• Named after Wei Dai - author of b-money paper 
(http://www.weidai.com/bmoney.txt, 1998), 
many core concepts used in BTC 
implementation

• 1/1,000,000,000,000,000,000 (quintillion)
• Szabo

• Named after Nick Szabo - author of Bit-Gold and 
the person who coined the phrase “smart 
contracts”

• Finney 
• Named after Hal Finney - received first Tx from 

Nakamoto

37

Do you recognize names 
behind some of the other 
denominations?

http://www.weidai.com/bmoney.txt


Ethereum Accounts

• All accounts have equal access to interacting with Ethereum
• External Owned Accounts (EOA)

• Human account
• Public/private keys used to send/validate transactions

• Contract Accounts
• Completely run by code once deployed
• Can hold and transfer ETH or other tokens
• Unchangeable outside of what is coded

38



Etherscan

• All blocks visible like BTC
• However, blocks have a different 

structure than BTC
• https://etherscan.io

39



Wallets

• A set of one or more external accounts
• Used to store/transfer ether

• Can also hold other tokens

• Manages Public/Private keys for you
• Usually opened with a password
• Provides back up phrase for keys

• X of Y Multisig wallets (e.g., need 2 of 3 to sign off on a transaction)

40



Ethereum Accounts
• Externally-owned account (EOA) –

controlled by anyone with the 
private keys
• Contract account – a smart 

contract deployed to the network, 
controlled by code.
• Both account types have the 

ability to:
• Receive, hold and send ETH and 

tokens
• Interact with deployed smart 

contracts
41

Source: https://ethereum.org/en/developers/docs/accounts/



Ethereum can be seen as a “chain of states”

43



“World State”

44
The world state is a mapping between address and account state. 



Tokens
• Digital assets which live on a blockchain not its own
• Can have utility in context of a DApp, represent a physical good, or be a 

digital collectible
• ERC-20: Fungible Ethereum Token spec

• All tokens are interchangeable, i.e., non-unique (like money)
• Divisible
• Examples: Binance, Tether, Uniswap, Chainlink, USDC

• ERC-721: Non-Fungible Ethereum Token spec 
• Each token unique (like collectibles or title deeds)
• Examples: Cryptokitties, Ethereum Name Service (ENS)

• Any idea where these numbers (20, 721) come from?
• The number 20 simply refers to the 20th ERC that was posted by someone. 

That person proposed a general interface for a fungible token.
45



What is ERC?

• Stands for “Ethereum Request for Comments”
• Open and public mechanism inspired by the well-known IETF Request 

for Comments (RFC)
• The mechanism for standardization of tokens

• So that one token can be traded for another in the Ethereum ecosystem

• ERC's are now called EIPs: Ethereum Improvement Proposals
• Because the majority of newcomers did not understand any difference 

between EIPs and ERCs they were merged.

46



An ERC-20 Token Example
Use a library such 
as OpenZepplin’s
ERC.sol
https://github.com/OpenZe
ppelin/openzeppelin-
contracts/blob/master/con
tracts/token/ERC20/ERC20.
sol

47

The constructor takes a name and a 
symbol.

The visibility specifier for mint 
defines the function as internal, 
which means only derived 
contracts can call this.
Sets the totalSupply.
Updates the balances



Minting Tokens

• Fixed Supply Tokens
• The mint function is callable only in the constructor once. 
• Once the token is deployed, there is no more access to the internal mint 

functionality, the supply of tokens remains fixed.

• Variable Supply Tokens
• Possible to mint more tokens after the contract is deployed.

48



Token is Minted!

49https://ropsten.etherscan.io/token/0xFC21D49A7fbD874cD97138bF1d55d7CC1513A3B1?a=0xaf23c650f36a6614d043f67d7153120c5efa84e7



Import into Your Wallet

50

You can specify the contract address and import 
the tokens to Metamask.

Now ready for transactions! 



Token Contracts

• A token can be created (minted) by a smart contract
• The minting process follows a set of rules specified in ERC-X (or EIP-X) 

standard, that dictates what it means to create, transfer, and keep 
track of account balances
• To purchase tokens, a buyer sends Ether to the smart contract 

affiliated with that token
• There are many online marketplaces and exchanges to buy and sell 

tokens
• For e.g., opensea.io is for the exchange of NFTs

51



Non Fungible Tokens (NFT)

52

The first big NFT!

https://www.cryptokitties.co



Cryptokitties are Based on Dutch Auctions

53

The “Buy it Now” price is initially set at the largest value.
As time goes on, the “Buy it Now” price is lowered 
As soon as someone is ready to buy it, they announce their bid and win. 

Example: https://solidity-by-example.org/app/dutch-auction

https://solidity-by-example.org/app/dutch-auction


What if I want to create an NFT?
• ERC-721 further extends the ERC-20 token specification by enabling the 

definition of unique, non-fungible tokens
• The primary difference is EC-721’s addition of the following:

• Unique token identification number (tokenID)
• External (off-chain) link that references a collection of data (metadata) that 

represents the unique properties of this token (tokenURI)
• Several token builder tools allow for web-based creation of ERC-721 tokens 

without coding, e.g., opensea.io
• The NFT is given a name and description with a means to set the offering price of 

the NFT along with options of blockchain platforms in which it will be deployed 
and run.

• For example, if Ethereum is its destination, it will auto-generate the Solidity 
smart contract and compile and deploy it with a simple push of a button.

• Then the NFT appears as a web page and enables you to “mint” a new token or 
transfer ownership to another user’s address.

54



Algorand

55



Algorand’s Founder
• Silvio Micali

• Professor MIT
• Turing Award, Gödel Prize 
• Scientific Contributions:

• Digital Signatures
• Probabilistic Encryption
• Zero-Knowledge Proofs
• Verifiable Random Functions
• Many other primitives of modern cryptography…

• The consensus mechanism used in Algorand is 
his brainchild:
• Sortition: select a random small constant-size 

committee that proposes blocks and votes on 
blocks

• Scales with millions of participation nodes!
56



Pure Proof of Stake

57

Block proposal:
Accounts 
propose new 
blocks to the 
network

Soft vote:
Committee votes 
on proposals and 
filters down to one

Certify vote:
A separate committee 
votes to certify the 
block

The new block is 
appended to the 
blockchain



Why Algorand?
• Block time < 4 seconds

• Ethereum = 12 seconds
• Bitcoin = 10 minutes

• Immediate finality, i.e., never forks!
• Once a block is added, it can never be removed
• Compare with Ethereum where Coinbase waits 14 blocks, i.e., about 3 minutes

• High throughput: 6000 transactions per second 
• Compare with Ethereum, which is < 30 transactions per second 

• Easy to develop
• No need to develop smart contracts in many cases (ASA, NFT, atomic transfers)
• Smart contract languages use python
• Official SDK for python, Javascript, Java and Go
• Community SDK for dot Net

58



Algorand Sustainability

“Permission-less” is not 
“Responsibility-less”

59
Source: https://prismic-io.s3.amazonaws.com/algorandfoundationv2/d5407f96-8e7d-4465-9656-
2abb558850a9_Proof+of+Stake+Blockchain+Efficiency+Framework.pdf



Algorand Standard Assets (ASA)

• Algo = native token
• ASA = custom token

• Anyone can create their own ASA
• Same transaction fee as the Algo
• Same throughput/latency
• Examples: reward/loyalty token, 

USDC, NFT ..

• Create your own token in a few 
seconds at:

• https://app.algodesk.io

• Comparison with Ethereum
• Similar to ERC-20/ ERC-721
• Lower transaction fee
• No smart contract

60

https://app.algodesk.io/


NFT = ASA with supply of just one!

Developer portal contains 
everything you need!
https://developer.algorand.org

Websites to create NFTs just in 
1-click
https://arcminter.daotools.org
Https://arc3.xyz

61

https://developer.algorand.org/
https://arcminter.daotools.org/
https://arc3.xyz/


Algorand Networks

62



Algorand Nodes
• Non-Relay Nodes

• Participation Nodes:
• Participate in the PPoS consensus  (verify the blocks and the transactions to ensure the 

network is safe)
• Light Configuration: store just the latest 1000 blocks (~20 GB)
• Recommended Specs: 8vCPU, 16GB RAM, 500 GB, 1GBPS broadband

• Archival Nodes: 
• Store all the chain since the genesis block (~1TB)
• Required for indexer, which is used to query the blockchain

• Relay Nodes
• Communication routing to a set of connected Non-Relay Nodes
• Connect both with Non-Relay Nodes and Relay Nodes
• Route blocks to all connected Non-Relay Nodes
• Highly efficient communication paths, reducing communication hops
• Recommended Specs: 16 vCPU, 32 GB RAM, 3GB SSD, 30 TB/month egress, 1 

GBPS broadband



Algorand Network Topology

64

Participation Nodes:
• ~200 unique accounts 

participating
• ~1.5B ALGOs online
• Permissionless

Relay Nodes:
• ~120 nodes
• Default relays chosen by the 

Algorand foundation
• Anyone can relay, but nodes 

must point to it



Algorand Nodes

• Running a node:
• Install the Algod (Algorand Deamon)
• Choose a network (MainNet, TestNet, BetaNet, PrivateNet)
• Start & Sync with the network

• Interacting with nodes:
• CLI utilities: goal, kmd and algokey
• REST API interface: algod V2, kmd, indexer
• Algorand SDKs: JavaScript, Python, Java, Go

65



Software
• algod – Algorand Daemon

• The node software that connects with the rest of the network
• HTTP endpoints for submitting transactions and reading state

• kmd – Key Management Daemon
• Responsible for the wallet management
• Manages account keys
• HTTP endpoints for managing and querying local accounts

• indexer
• Software that can run alongside an archival node
• Saves blockchain state in SQL database
• Provides HTTP endpoints specifically for querying on-chain data (for e.g., to 

query the balance of a particular account
68



Interacting with Nodes

• goal
• Command-line utility for interacting with algod and kmd programmatically

• SDKs
• Leverage HTTP endpoints to interact with algod and kmd
• Essentially, programmable wrappers
• Python SDK, Javascript SDK, Java SDK

• Public API services
• Services that expose HTTP endpoints for Algorand nodes publicly
• Useful when you don’t want to run your own node

69



Algorand Wallets

70

Mobile Wallet + Wallet Connect

MyAlgo Wallet

Algosigner

Pera Wallet



Algorand Explorers

• AlgoExplorer
• Goalseeker
• NFTExplorer
• Algorand Ballet - Algorand accounts’ 2D 

graphs.
• Algorand Multiverse - Algorand accounts’ 3D 

graphs.
• Algoscan - Algoscan is a Blockchain Explorer 

and Analytics Platform. Built on top of the 
Algorand Network.
• Asalytic - Analyze the Algorand NFT space.
• Dappflow - Algorand Private Network Explorer 

(supports Sandbox in localhost).
71

Algorand Multiverse 
at https://algo3d.live



Algorand Transactions
• Transactions are the core element of blocks, which define the evolution of 

distributed ledger state. 
• There are six transaction types in the Algorand Protocol: 

1. Payment (sends Algos from one account to another)
2. Key Registration (register an account to participate in Algorand Consensus).
3. Asset Configuration (create an asset, modify certain parameters of an asset, or destroy an 

asset)
4. Asset Transfer (receive a specific type of Algorand Standard Asset, transfer an Algorand

Standard asset, or revoke an Algorand Standard Asset from a specific account)
5. Asset Freeze (asset receiver address losing or being granted the ability to send or receive 

the frozen asset)
6. Application Call (Smart contract logic identified by an AppId and an OnComplete method. 

The AppId specifies which App to call and the OnComplete method is used in the contract 
to determine what branch of logic to execute.)

• These six transaction types can be specified in particular ways that result in more 
granular perceived transaction types. 

72



Example Algorand Transaction

73

Transaction that sends 5 
Algos from one account 
to another on MainNet.



Example Algorand Transaction

74

Asset creation 
transaction

Asset parameters struct that 
includes all the initial 
configurations for the asset



Multi-Signature Transactions in Algorand

75



Algorand Addresses

76



Algorand Accounts
• Accounts are entities on the Algorand blockchain associated with specific 

on-chain local state. 
• An Algorand Address is the unique identifier for an Algorand Account. 

77



Smart Contracts

• Flat fee (0.001 ALGO) until congestion
• Turing complete language (TEAL)

• Hard-coded limitations to keep complexity in check

• Can read/write blockchain state and send transactions

78



Smart Contract Tech Stack in Algorand

• Algorand Virtual Machine (AVM)
• Running on every node
• Not compatible with Ethereum Virtual Machine

• Transaction Execution Approval Language (TEAL)
• Assembly-like language for writing smart contracts

• PyTeal, Beaker, and AlgoKit
• Python library and framework for writing Algorand smart contracts
• Ultimately compiles down to TEAL

79



Algorand Virtual Machine (AVM)
• Available data

• Transaction information: sender, fee, amount
• Global variables: current round, latest timestamp

• The Algorand Virtual Machine is a Turing-complete secure execution 
environment that runs on the Algorand consensus layer. 
• AVM approves transactions’ effects if and only if:

• There is a single non-zero value on top of AVM’s stack 
• AVM rejects transactions’ effects if and only if: 

• There is a single zero (false) value on top of AVM’s stack
• There are multiple values on the AVM’s stack
• There is no value on the AVM’s stack

• The AVM runs on every node in the Algorand blockchain.
• It contains a stack that evaluates smart contracts and smart signatures.

80



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

81



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

82



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

83



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

84



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

85



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

86



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

87



How does the AVM work?

• Suppose we want the AVM to check the following assertion: 

88



Transaction Execution Approval Language (TEAL)

• AVM interprets an assembler-like language called TEAL.
• TEAL can be thought of as syntactic sugar for AVM bytecode.
• TEAL programs are comprised of a set of operation codes (opcodes).
• These opcodes are used to implement the logic of smart contracts 

and smart signatures.
• While it is possible to write TEAL directly, a developer may prefer to 

use the PyTeal Python library, which provides a more familiar syntax.

89



AVM Architecture

90

1000 levels

volatile 
memory for 
temp storage

List of opcodes in TEAL



AVM vs EVM

91



Algorand Programming Ecosystem

92



Application State
• Global Storage 

• 64 key/value pairs
• Limited to 128 bytes per key/value pair
• Any app on-chain can read it
• Minimum Balance Requirement (MBR) funded during the 

app creation process by the smart contract creator
• Proportional to the amount of storage used

• Local Storage
• 16 key/value pairs per account
• Limited to 128 bytes per key/value pair
• It can be read by any app on-chain
• MBR funded during opt-in by end-user

• Proportional to the amount of storage used
• Accounts must opt-in before the end-user uses the 

application
• Can be cleared by the end-user at any time

• So, do not use local storage for any mission critical data

93

• Box Storage
• “Unlimited” named storage segments

• Flexible in terms of types of data and 
how much data you can store

• Up to 32kb per box
• Can only be read by the app that created 

the box
• MBR funded during box creation by 

contract account
• Proportional to box size



Transactions

• An application can send any transaction type
• This includes application calls

• An application can send up to 16 transactions
• Inner transactions are atomic with the outer transactions
• One failure will cause all to fail

• Every application has its own contract address it can send 
transactions from

94



Atomic Transfers / Group Transactions

95

Alice Bob

1 Algo

20 USDC

This is a transaction

Any transaction can be part of atomic transfer, which can include 
up to 16 transactions.
Either all transactions succeed or all transactions fail! 



Creating a Smart Contract with TEAL
• Suppose we want to develop a Smart Contract that 

approves a transaction if and only if: 
1. Is “Payment” type transaction; 
2. The receiver is a specific “ADDR”; 
3. Fees are less or equal to “1000 microALGO”; 
4. First argument is equal to “bianconiglio”; 
5. Amount is equal to “42 ALGO”; 
6. Or amount is equal to “77 ALGO”; 

• To translate those 6 semantically defined example 
conditions into TEAL, we need to check which 
transaction fields are going to be controlled by Smart 
Signature’s logic. 

96



Translating Conditions into TEAL

1. is “Payment” type transaction; 

97



Translating Conditions into TEAL

2. the receiver is a specific “ADDR”; 

98



Translating Conditions into TEAL

3. fees are less or equal to “1000 microALGO”; 

99



Translating Conditions into TEAL

4. first argument is equal to “bianconiglio”; 

100



Translating Conditions into TEAL

5. amount is equal to “77 ALGO”; 

101



Translating Conditions into TEAL

6. or amount is equal to “42 ALGO”; 

102



Logic Connectors
This is probably the most complex phase in TEAL programming 
because you need to keep in mind the state of the stack. 

103

This phase is drastically 
simplified with the use of 
PyTEAL, Python binding for 
TEAL, which automatically 
performs this concatenation, 
saving us the effort of thinking 
about the state of the stack 



Execution – Step 1

104



Execution – Step 2

105



Execution – Step 3

106



Execution – Step 4

107



Execution – Step 5

108



Execution – Step 6

109



Execution – Step 7

110



Execution – Step 8

111



Execution – Step 9

112



Execution – Step 10

113



Execution – Step 11

114



Execution – Step 12

115



Execution – Step 13

116



Execution – Step 14

117



Execution – Step 15

118



Execution – Step 16

119



Execution – Step 17

120



Execution – Step 18

121



Execution – Step 19

122



Execution – Step 20

123



Execution – Step 21

124



Execution – Step 22

125



Execution – Step 23

126



Execution – Step 24

127



Execution – Step 25

128



Execution – Step 26

129



Execution – Step 27

130



Execution – Step 28

131



Execution – Step 29

132



Execution – Step 30

133



Execution – Step 31

134



Execution – Step 32

135



Execution – Step 33

136



Execution – Step 34

137



Conclusion

138



PyTEAL
• PyTEAL is a Python language binding for Algorand Virtual Machine. 
• Allows Smart Contracts and Smart Signatures to be written in Python 

and then compiled to TEAL
• PyTEAL expressions represent an abstract syntax tree (AST).
• Basically, use Python code to produce TEAL code. 

139



Algorand Resources

• AlgoDevs on Youtube: https://www.youtube.com/@algodevs

• ACE: https://www.algorand.foundation/ace-learning-resources

• Algokit: https://github.com/algorandfoundation/algokit-
cli/blob/main/docs/tutorials/intro.md

140

https://www.youtube.com/@algodevs


Multidisciplinary Educational Global Alliance for Algorand Center of Excellence

141

mega-ace.org



Smart Contract Research

142



• Allow for heterogenous and multi-stakeholder 
swarms

• Robots, AI services, or even humans

• Create a system which is more robust through 
decentralization and voluntarism
• Generalizable to different applications 
• Incentivizes cooperative behavior over long 

term
• Disincentivizes adversarial behavior over long 

term

143

Swarm Contracts Swarm Contracts: Smart Contracts in Robotic 
Swarms with Varying Behavior; Jonathan Grey, 
Isuru Godage, Oshani Seneviratne. IEEE 
Blockchain Conference 2020.

Disaster recovery

Potential Applications

Pooling Resources for 
Scientific Endeavors 



Swarm Contract Features
Public Information

Set by contract creator:
• Adjudicators
• Contract reward
• Job data (will vary depending 

on application)
• Deadline

Set later:
• Acceptor
• Judgments

Functions

• Accept
Accept the contract by paying 
insurance

• Adjudicate
Submit a judgment, final judgment 
pays out contract

• Revoke
If no one accepts, reclaim funds

• Surrender
Back out of contract, for a price

144

Worker

Chief

Adjudicator

Agents

Agent Sub Types:   Fair Adversarial



Sequence Diagram

145



Swarm Contract Simulation

146



Swarm Contract Performance

147



Collecting Data for Decentralized 
Knowledge Graph with Smart 
Contracts

148

Decentralized Framework for 
Collection and Secure Storage of 
Google Street View Data: Case 
Study; Sanjaya Mallikarachchi, 
Bonnie Ho, Iyad Kanj, Oshani 
Seneviratne and Isuru Godage;
IEEE GlobCon2023 and 
ICCAR2023



Private Ledger Based Store for Storing Image 
Sequences

Legend
P.D. - Pixel Data
T.S. – Timestamp
G.C. - GPS Coordinate 

149

• Each hash is an identifier of the single points of data the agent collects, and they 
form the basis of identities in a decentralized knowledge graph.

• We are expanding this to include knowledge about Points of Interest to create a 
comprehensive multi-modal decentralized knowledge graph.



Application – Building Indoor Maps

150
Lidar MapTop-level generated map



151

On the Web, nobody knows you are a dog! On the Blockchain, nobody knows you are an AI!



Using Smart Contracts in Data and Computation Heavy Applications

152

For example, decentralized health 
applications may need data from various 
sources with complex schemas where the 
data streams are fast changing.

Limitations in smart contract programming languages

Lack of support for complex 
data structures

Control structures incur very 
high gas costs



Read-Execute-Transact-Erase-Loop 
(RETEL)

153

Read: the high-level python commands for
executing smart contract code
Execute/ Transact: execute the commands,
and input and output history of the
execution flow is provided through the
RETEL Interpreter
Erase: the python interpretation of the
solidity smart contract is deleted in
preparation for the next smart contract
execution
Loop: the interpreter will then iterate
towards the next smart contract

BlockIoT-RETEL: Blockchain and IoT Based 
Read-Execute-Transact-Erase-Loop 
Environment for Integrating Personal Health 
Data;  Manan Shukla, Jianjing Lin, Oshani 
Seneviratne. IEEE Blockchain Conference 2021.



Incentivized Accountable 
Research Data Sharing Ecosystem

157

Goals: 

• Handle 
“Researcher’s 
Dilemma”

• Reward 
Reproducible 
Research and Peer 
Verification

• Tokenization of 
Rewards

Accountable Bench-to-Bedside Data-
Sharing Mechanism for Researchers;
Oshani Seneviratne, Deborah McGuinness; 
Transactions on Social Computing, 2023.

Bench-to-Bedside Biomedical Research Scenario: 



Use Case: COVID-19 National Collaboration (N3C)

• Data contributors are rewarded 
for their contributions with 
“data credits” NFT token.
• Data users must use the data for 

research purposes.
• The N3C Data Access 

Committee reviews data access 
requests.
• We captured these usage 

requirements and data credits 
generation in smart contracts.

158



Semantics-based Framework for 
Incentivized Research Data Sharing

159

Semantics-based Framework for 
Incentivized Research Data Sharing;
Kacy Adams, Deborah McGuinness, 
Oshani Seneviratne; FLAIRS'23.

Data Sharing Ontology



Semantics-based Framework for Incentivized 
Research Data Sharing (contd.)

160
Data Sharing Template

Addresses the following 
competency questions:
Q1: What does the data seeker 
intend to use the data for?
Q2. Has the data exchanged hands 
between the collaborating 
researchers? 
Q3. Which publication by the data 
seeker uses the shared dataset? 
Q4. How many researchers have 
cited a dataset listed on the 
protocol? 
Q5. Why has a researcher left a 
specific review?



Rewarding Reproducible Research 
with the SCIENCE Index
SCIENCE
Capability-based
Intention-centric
Experiment-oriented
Networked
Collaborative
Expression

• Mechanism to reward researchers for their 
data contributions
• Supplements the h-index
• To overcome the “cold-start” problem in 

our data-sharing dApp, we bootstrapped 
the SCIENCE-index with:

• Publication data from the Microsoft Academic 
Graph 

• Data citations from DataCite

161

Assessing Scientific Contributions in 
Data Sharing Spaces; Kacy Adams, 
Fernando Spadea, Conor Flynn, 
Oshani Seneviratne; Sci-K'23.



Questions?
Please feel free to email me at senevo@rpi.edu

Twitter: @oshaniws
LinkedIn: https://www.linkedin.com/in/oshani

162

mailto:senevo@rpi.edu
https://www.linkedin.com/in/oshani

