@ Rensselaer

Empowering Decentralization through Smart
Contracts

Texas A&M Blockchain Day
May 1, 2023

Oshani Seneviratne
Associate Director, Tetherless World Constellation
Assistant Professor, Department of Computer Science
Rensselaer Polytechnic Institute, Troy NY USA

@) Rensselaer
Key Build Blocks of Blockchain Technologies

Blockchain technologies are built on top of the following:

B|]|E12 p] B
Gl | v —
J [p—
J R
Cryptographic Consensus Protocol Ledger aka “Chain” Smart
Hashes Contract

and ldentities

® Rensselaer

Example (Bitcoin) Transactions 13 coins
25 coins N %vﬁ 25 coins 5 coins :rij?

‘)

Alice Carol Alice

° e 17 coins ' '6 8‘ =
8 coins A 15coins <
‘ Q4 4‘ N

Bob Alice David

13 coins < 15 coins
! Can Alice perform this last transaction?

Carol

@ Rensselaer
Bitcoin Transactions

One way to organize a ledger

Create 25 coins and credit to AllceASSERTED BY MINERS

Transfer 17 coins from Alice to BObSIGNED(Alice)

Transfer 8 coins from Bob to CarolSIGNED(Bob)

Transfer 5 coins from Carol to Aliceg,.\ . caron

Transfer 15 coins from Alice to DaVIdSIGNED(Alice)

How can we build a currency on top of such a ledger?

The downside to this
way of doing things is
that anyone who
wants to determine if
a transaction is valid
will have to keep
track of these
account balances.

v Rensselaer
Bitcoin’s way of organizing the ledger

Bitcoin doesn’t use an account-based model. Bitcoin uses a ledger that just
keeps track of transactions.

Transactions specify a number of inputs

Inputs: @
and a number of outputs
Outputs: 25.0-Alice P

2 | Inputs: 1[0] You can think of the inputs as coins being
Outputs: 17.0-Bob, 8.0—-Alice consumed (created in a previous

==2=_/ transaction) and the outputs as coins
being created

3 | Inputs: 2[0]
Outputs: 8.0—Carol, 9.0-Bob

SIGNED(Bob)

Why does Alice have to send money

4 | Inputs: 2[1]
to herself?

Outputs: 6.0—David, 2.0—Alice

SIGNED(Alice)

When a new tx is added, how easy is it
to check if it is valid? 5

Rensselaer
An Actual Bitcoin Transaction

metadata

input(s)

output(s)

-

—

|

- —
p—

o

"hash":"5a42590fbe0a90ee8e8747244d6c84f0db1a3az4e8f1b95b10c9e050990b8b6bL",
el

"vin_sz":2,

"vout_sz":1,

"lock_time™:0,

"size":404,

"in":[

{

"prev_out":{
"hash":"3be4ac9728a0823cf5e2deb2e86fcObd2aa503a91d307b42ba76117d79280260",
"n":0

1

"scriptSig":"30440..."

{

"prev_out":{
“hash":"7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91fféb34e”,

n":0
b
"scriptSig™:"3f3adce81....”
}
]v
"out™:[

{
"value":"10.12287097",

"scriptPubKey":"OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e OP_EQUALVERIFY OP_CHECKSIG™

@ Rensselaer
Bitcoin Scripting Language

* Has a fixed set of “Op Codes” or instructions:
* A total of 256 — 15 are disabled, 75 are reserved
* Basic functions — arithmetic, conditionals
* Crypto functions — hash functions, signature verifications

* Turing Incomplete
* Does not allow infinite loops
» Advantage: does not run malformed/malicious scripts
* Disadvantage: does not allow for complex logic to build applications on the
blockchain]
* Reverse-Polish Notation Push wop
* The operators follow operands, e.g., “1 + 2” is written as “1 2 +”

» Stack-based
* Last-In-First-Out (LIFO)

m

® Rensselaer
Bitcoin Scripts in Action

‘a 8‘ L:\ rs‘

15 coins

,
Alice David
* Transaction Input 10 BTC

 Alice needs to get bitcoins
which she has received from
various previous transactions.

* Suppose Alice needs to pull 4 BTC
bitcoins from the following
transactions which we shall

name TX(0), TX(1) and TX(2) 5 BTC

X(®)

® Rensselaer
Bitcoin Scripts in Action

‘a 6‘ ‘z z‘

- 15 coins . -
Alice David

* Transaction Output will have the
number of bitcoins that Bob will
possess, post-transaction.

* Any remaining change that is left

over is sent back to Alice.
* Conditions of a transaction 16 BTC t

* TX(Input) > TX(output) 16 — 15 — (Tx fees) BTC

* Transaction fees = TX(Input) —
(TX(output) + Change). -

15 BTC

Rensselaer
Bitcoin Scripts in Action: Behind the Scenes

Summary SD | BTC

This transaction was first broadcast to the Bitcoin network on April 01, 2021 at 8:04 PM EDT. The transaction is currently unconfirmed by the network. At the time of this
transaction, 0.05373398 BTC was sent with a value of $3,156.17. The current value of this transaction is now $3,157.22. Learn more about how transactions work.

Hash 11b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe70... 2021-04-01 20:04
16Cpk9DWItS8NYLZh8EQPOU9HkQgD7Kk3y 0.05396224 BTC & » 3MAXx06YkS4Risp4Fk7KXiR4aN6mt3DngXz 0.00198630 BTC &
16Cpk9DW1t58NYLZh8EQPOUIHkQgD7KKk3y 0.05174768 BTC &

Fee 0.00022826 BTC

0.05373398 BTC
(102.359 sat/B - 25.590 sat/WU - 223 bytes)

UNCONFIRMED

Name of the transaction

https://www.blockchain.com/btc/tx/l1b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939t1:%af38

Rensselaer
Bitcoin Scripts in Action: Behind the Scenes

Inputs ASM
Index 0 Details Output
Address 16Cpk9DW1t58NYLZh8EQpOuU9HkQgD7Kk3y W Value 0.05396224 BTC
Pkscript OP_DUP
OP_HASH160

39150f1cf405f2f81258b3cba0f959d850fc0412
OP_EQUALVERIFY
OP_CHECKSIG

Sigscript 304402204e8250d2b7ca777a4244653fb0100e0b7ce334acce55bd89b7c403dddadd0b21022077e794195826aedb7cedcf40b4514f389d41034b638b53817a
5f70226d81b8d801

020c5b01a17d444499b91b42cdf311f7c17fcf3e8249caelffe694e45ab282d5¢c2

https://www.blockchain.com/btc/tx/l1b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939t1:ibaf38

) Rensselaer
Bitcoin Scripts in Action: Behind the Scenes

Outputs

Index 0 Details Unspent
Address 3MAX06YkS4Risp4Fk7KXiR4aN6mt3DngXz @ Value 0.00198630 BTC
Pkscript OP_HASH160

d5b36ceda34816e4dcfaf7cde8dbf8619dchbc3b5c

OP_EQUAL
Index 1 Details Unspent
Address 16CpkODW1t58NYLZh8EQpOUIHKQgD7Kk3y Value 0.05174768 BTC
Pkscript OP_DUP

OP_HASH160

39150f1cf405f2f81258b3cba0f959d850fc0412
OP_EQUALVERIFY
OP_CHECKSIG

Script to “unlock” the unspent transaction outputs (UTXO)
https://www.blockchain.com/btc/tx/l1b2b73d3e24c3c02c038b47a21237e69a5386108f3c80ebe7051eb939t1:f)af38

® Rensselaer
Bitcoin Scripts in Action

ﬂ 12 BTC > (N‘

Alice Bob

* Alice sends Bob an output which has the scriptPubKey, which
includes Bob’s address.

* Bob unlocks the input using his signature of scriptSig which
includes his signature and his public key.

* scriptPubKey = OP_DUP OP HASH160 <Bob’s public
address> OP_EQUALVERIFY

* scriptSig = <Bob’s signature> <Bob’s public key>

13

@ Rensselaer
Bitcoin Scripts in Action: A Game of Locking and
Unlocking

/Unlocking Script

locking Script
ScriptSig ED] ScriptPubKey

)
[+]

P

<sig> <PubK> DUP HASH160<PubKHash> EqualVerify CheckSig

_ _/

Source: https://www.cryptocompare.com/wallets/guides/bitcoin-transactions-pay-to-address-pay-to-public-key-hash/

Script
<Bob’s signature> <Bob’s public key> OP_DUP OP_HASH160 <Bob’s public address> OP_EQUALVERIFY

® Rensselaer
Bitcoin Scripts in Action: Verification

» <Bob’s signature> <Bob’s public key> OP_DUP
OP_HASH160 <Bob’s public address>

OP EQU ALVERIFY <Bob’s signature>

* For OP_DUP pop <Bob’s public key>, duplicate it

<Bob’s public key>

and push it back

<Bob’s signature>

<Bob’s public key>

<Bob’s public key>

<Bob’s signature>

15

® Rensselaer
Bitcoin Scripts in Action: Verification

<Bob’s signature> <Bob’s public key> OP_DUP
OP_HASH160 <Bob’s public address>

OP_EQUALVERIFY

<Bob’s public address>

* OP_HASH160 pops <Bob’s public key> runs it
through SHA256 followed by RIPEMOD160 to get
<Bob’s public address>

* OP_EQUALVERIFY pops the last two elements in the
stack and check to see if they are equal or not

<Bob’s public key>

<Bob’s signature>

<Bob’s public key>

<Bob’s signature>

® Rensselaer
Bitcoin Scripts in Action: Verification

<Bob’s signature> <Bob’s public key> OP_DUP
OP_HASH160 <Bob’s public address>

OP_EQUALVERIFY

pops <Bob’s public key> and <Bob’s
signature> and checks their validity.

<Bob’s public key>

* This is where the Elliptical Curve Digital Signature
Algorithm (ECDSA) is used.

<Bob’s signature>

17

®) Rensselaer
Summary of Bitcoin Scripts

* Stack-based
* Data in the script is enclosed in <>: <sig>, <pubkey>, etc.

* Opcodes: commands or functions
e Arithmetic, e.g., OP_ABS, OP_ADD
Stack, e.g., OP_DROP, OP_SWAP
Flow control, e.g., OP_IF, OP_ELSE
Bitwise logic, e.g., OP_EQUAL, OP_EQUALVERIFY
Hashing, e.g., OP_SHA1, OP_SHA256
(Multiple) Signature Verification, e.g., OP_CHECKSIG, OP_CHECKMULTISIG
Locktime, e.g., OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY

ANIEG
:5‘0 "l,g
I =5 %
=, ae
< >3
15280

Bitcoin’s Scripting Language Limitations

* Lack of Turing completeness: No loops
* Lack of state: Cannot keep internal state.
* Value-blindness: Cannot denominate the amount being sent

e Blockchain-blindness: Cannot access block header values such as
nonce, timestamp, and previous hash block.

© Rensselaer
Extending Bitcoin Functionality

* Building a protocol on top of Bitcoin:

* Pros:
* Take advantage of the underlying network and mining power.
e Very low development cost.

* Cons:
* No flexibility.

* Build an independent network:

* Pros:
e Easy to add and extend new opcodes.
* Flexibility.
* Cons:
* Need to attract miners to sustain the network.
 Difficult to implement

@) Rensselaer
Alternative (Early) Blockchain Applications

* Namecoin:
* Bitcoin fork: Currency NMC
* Decentralized name registration database: DNS, identities etc

* Colored Coins:
* On top of Bitcoin
* Allows people to create their own digital currencies

 Omnilayer (formerly Mastercoin)
* On top of Bitcoin
 Distributed exchange, smart property, distributed e-commerce, etc

* OpenBazaar
* On top of Bitcoin
* Decentralized marketplace

Better Blockchain Programming
Models

®© Rensselaer
Smart Contracts

* Programatically enforced state updates
* You can add any functionality you want!

 Can facilitate access to and distribution of funds based on specified
conditions

» Can create, transfer, and alter arbitrary digital assets

* Interact with other contracts to create robust, interoperable
applications

* Base layer for the Internet of Value

— e (@)
e (@) b S
e v —_
—— J
=" K
Define Trigger Execute Settle
Terms and Execution of the = The smart contract Transaction
conditions are contract is is executed results are settled
agreed by all triggered by an automatically on the blockchain

parties involved event

® Rensselaer

What are some

advantages of
smart contracts?

Savings

——————
- ~a

e
~

; ’
v ’
‘ , \\

/ \

v Il .) < . \
v

I

/

SMART CONTRACTS

{o3 4e}

%

Autonomous
Execution

FOz

N -
-

/
1
I

I

I

i

1

‘\ Code Is Law

Trustless
Execution

Default

Avoid Manual Backups
25

Error
Source: https://www.edureka.co/blog/smart-contracts

®© Rensselaer

Vending Machines as a Smart Contract

Vending Machines
Works exactly as programmed!

Automatically
dispenses Item,

: . . o
No risk of interfering or tampering! Calculates change

* Buyer selects an item on the
screen and agrees to the
specified payment

* Buyer inputs cash into the
vending machine

* The machine recognizes the
payment, confirms its
validity, and drops the buyer
what they picked from the
machine.

26

®© Rensselaer
History of Ethereum

e Russian-Canadian Vitalik Buterin co-founded Ethereum
when he was 19 years old

* Whitepaper in 2013

* ‘A Next-Generation Smart Contract and Decentralized
Application Platform’ Ethereum

* Genesis block July 2015
* Important Concepts

* Blockchain
* Accounts
* Wallets Vv —
* Transactions v —_—
* Smart Contracts e—
[)
Tokens Blockchain / Smart

* Decentralized Applications
Distributed ledger Contract

@ Rensselaer
Ethereum Blockchain

* Blockchain as a Fully “Distributed Database”
» Stores data
* Transactions/messages alter the data Ethereum

* The “data” can be any digital asset/token

* Ethereum uses smart contracts to dramatically expand transaction
capabilities

* What are smart contracts?

* “Aset of promises, SEecified in digital form, including protocols within which the
parties perform on these promises.” Nick Szabo, 1996

However
* Smart Contracts may not be ‘Smart’
* Smart Contracts may not be ‘Contracts’

® Rensselaer
Decentralized Applications (DApps)

* Goal is totally distributed application
* No point of failure
* No censorship
 Totally transparent

* App logic via smart contract

* App data via decentralized storage like Inter-Planetary File System
(IPFS) or Swarm

 Name resolution via Ethereum Name Service (ENS)

* Messaging via Whisper (decentralized SMS - or message calls
between applications)

» Backend (or legacy application) integration via Web3

@ Rensselaer

Programming Dapps in Ethereum

* Using a special
programming language
called Solidity

* [t uses a syntax that
resembles JavaScript

Ethereum platform

Tokens e golem @ civic . bread @ funfair

Smart

Contract Contract Contract Contract
Contracts 0x01A... 0x02b... 0x02c... 0x01B...
Blockchain Block Block Block
N-1 N \ N+1

. - = == == <l oo

Ethereum platform architecture

30

@ Rensselaer
Ethereum Under the Hood

* Blocks created faster than BTC and reward is different
* Every 15 seconds
e ~ 2 ETH main reward
 Different mining algorithm, i.e., Keccak 256
* The same ECDSA used to generate public keys

* Blocks keep track of balances — not UTXO like BTC

* Transitioned from Proof of Work to Proof of Stake on Sep 15, 2022
* https://ethereum.org/en/upgrades/merge

® Rensselaer

Gas

* Halting problem:

* Cannot tell whether or not a program will run infinitely from compiled code
(infinite loop)

 Solution: charge fee per computational step to limit infinite loops and stop
flawed code from executing

 Every transaction needs to specify an estimate of the amount of gas
it will spend

* Essentially a measure of how much one is willing to spend on a
transaction, even if buggy

®) Rensselaer

Gas Cost

* Helps to regulate load on network

* Gas Price
e Current market price of a unit of Gas (in Wei)
* Check gas price here: https://ethgasstation.info
* Gas price is always set before a transaction by user

* Gas Limit
* The maximum amount of Gas user is willing to spend
 All blocks have a Gas Limit (maximum Gas each block can use)

* Gas Cost
* Used when sending transactions
 Calculated by gasLimit*gasPrice.

33

https://ethgasstation.info/

®@ Rensselaer

Each transaction on the public Ethereum network
has to pay a gas fee

| §$:T%Al\\ls o 4 @ Change Currency

Recommended priority fee in Gwei

@& TxPool Vision

& Gas Bumers FAST STANDARD SAFE LOW
A $0.13/Transfer 2 $0.07/Transfer 2 $0.07/Transfer

 FAQ

& Links
Base Fee: 0 ($0.00 / Transfer)

More complicated transactions consume more gas, so they cost more.
See ”“Gas Burners” for such transactions.

34

Rensselaer
Ethereum Gas Tracker

m, Etherscan AllFilters v | Search by Address / Txn Hash / Block / Token / Ens n

Eth: $1,575.87 (-2.60%) | X) 23 Gwei Home Blockchain v Tokens v Resources v More ~ O Sign In

Ad
Ethereum Gas Tracker 8 Advertise your brand here!
Featured: Wallet-to-wallet instant messaging via Blockscan Chat! Start Today
Next update in 13s Fri, 27 Jan 2023 14:3333 UTC (@) Confirmation Time x Gas Price (Last 1000 blocks)
Source: Etherscan.io
22 Low = Average <) High 500
21 gwei 23 gwei 24 gwei 200
Base: 20 | Priority: 1 Base: 20 | Priority: 3 Base: 20 | Priority: 4 _
$0.46 | ~ 10 mins: 0 secs $0.50 | ~ 3 mins: 0 secs $0.53 | ~ 30 secs ¥ 300
2
"
£
=
Cost of Tr ion Acti View API o 200
<
Action Low Average High 100
(® OpenSea: Sale $1.69 $1.81 $1.92 o
21 22 23 24
@ Uniswap V3: Swap $4.36 $4.65 $4.94 Gas Price (Gwei)
(@ USDT: Transfer $1.28 $1.36 $1.45
B Gas Guzzlers) Gas Spenders = Historical Gas Oracle Prices
Top 50 Gas Guzzlers (Contracts / Accounts that consume a lot of Gas) Last updated at Block 16498308
Rank Address Fees Last 3hrs < % Used 3hrs Fees Last 24hrs % Used 24hrs Analytics

https://etherscan.io/gastracker

)

) Rensselaer
Miners limited by a global limit on gas per block

Ethereum Average Gas Limit
30.00M for Jan 26 2023

OWIEG,
% !E! y
Q=
s

Overview Interactive Chart

Level Chart VIEW FULL CHART

m 50 1™ 3M 6M YTD 1Y 3Y 5Y 10Y MAX

20.00M

10.00M
/ V

0.00
2019 2020 2021 2022 2023

There’s a limit to how much gas can be consumed in each block, i.e., a limit on
how many smart contract program statements can be evaluated on each block.
It has been increasing, but at any given time, there’s a limit— currently 30 MWei

v/ Rensselaer
Ethereum Lingo

Ether Denominations

* Wei - lowest denomination L LR
» Named after Wei Dai - author of b-money paper ** L
(http://www.weidai.com/bmoney.txt, 1998), Kwei (babbage) 1e3 wei
many core concepts used in BTC Mwei (lovelace) 1e6 wei
implementation Gwei (shannon) 1e9 wei
® 1/1,000,000,000,000,000,000 (qU|nt|”|On) microether (szabo) 1e12 wei
° Szabo milliether (finney) 1e15 wei

ether 1e18 wei

* Named after Nick Szabo - author of Bit-Gold and
the person who coined the phrase “smart
contracts”

Wei

1

1,000

1,000,000
1,000,000,000
1,000,000,000,000
1,000,000,000,000,000

1,000,000,000,000,000,000

Do you recognize names

behind some of the other

* Finney

* Named after Hal Finney - received first Tx from
Nakamoto

denominations?

37

http://www.weidai.com/bmoney.txt

® Rensselaer

Ethereum Accounts

* All accounts have equal access to interacting with Ethereum

* External Owned Accounts (EOA)

* Human account
* Public/private keys used to send/validate transactions

* Contract Accounts
e Completely run by code once deployed
e Can hold and transfer ETH or other tokens
* Unchangeable outside of what is coded

REI ISS(ﬂaﬁl ™ Etherscan AlFiters+ Search b Tan Hash /&
Eth: $1,998.93 (+3.77%) | &) 162 Gwei Home Blockchain v Tokens v Resources v More v

Block #12157445

Et I I e rS C a I I Sponsored: Roobet - Play over 1,000 games, claim daily rewards & more. - Instantly Deposit & Withdraw

Overview Comments
(@ Block Height: 12157445 < >
° AI I b I 0 C kS Vi Si b I e I i ke B I (: Timestamp: © 1 min ago (Apr-02-2021 02:26:15 AM +UTC)
(@ Transactions: 274 transactions and 46 contract internal transactions in this block
.
L H Oweve r’ b I O C ks h ave a d Iffe re nt Mined by: Oxeab74fdde714id979de3edi0f56aa9716b898ecs (Ethermine) in 3 secs

(?) Block Reward: 4.052479269131681109 Ether (2 + 2.052479269131681109)
structure than BTC

(@ Uncles Reward: 0
.
* h tt pS . Et h erscan.io @ Difficulty: 6,541,924,263,352,385
@ Total Difficulty: 22,748,241,644,538,833,270,710
@ size: 46,845 bytes

12,478,904 (99.93%)

(@ Gas Limit: 12,487,794

Extra Data: ethermine-europe-north1 (Hex:0x657468657 1657572617 72746831)
(@ Hash: 0xd383220a345d1d37c1e5cc4c: 8d617116150 b6bfdO: 5
(@ Parent Hash: Oxa4b57e245ba3d7d9bf3672b7a8a7488ca5d25026081b41448ca92¢173a0df065

Ox1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347

() StateRoot: 0x7125d79aa16be7cdd0ad4bcaObe75dfbe03d8634434a7867b7220939738643a65

(@ Nonce: 0x5dd8b3ab77047130

®© Rensselaer
Wallets

* A set of one or more external accounts

* Used to store/transfer ether
e Can also hold other tokens

* Manages Public/Private keys for you
* Usually opened with a password
* Provides back up phrase for keys

« X of Y Multisig wallets (e.g., need 2 of 3 to sign off on a transaction)

® Rensselaer
Ethereum Accounts

 Externally-owned account (EOA) —
controlled by anyone with the
private keys

* Contract account —a smart
contract deployed to the network,
controlled by code.

* Both account types have the
ability to:
* Receive, hold and send ETH and
tokens

* Interact with deployed smart
contracts

Address 1 --c3 > nonce

balance

storage hash &-=----d > i

code hash ¢y N

So"urce: https://ethereum.org/en/developers/docs/accounts/

SN

SE=N\]j‘
?‘ = ; HSSG ae

& 1824 %

N

Ethereum can be seen as a “chain of states”

Block b

Transaction T,

Transaction T,

Transaction T,

World state
Gy

\

/

Block b+1

Transaction T,

Transaction T

Transaction Tg

World state
G t+1

World state
O t+2

43

®© Rensselaer
“World State”

/ Address 1 &7 Account statD\
Address 2 ® Account stat@
kAddress 3 e Account stattD/

The world state is a mapping between address and account state.

44

® Rensselaer
Tokens

* Digital assets which live on a blockchain not its own

* Can have utility in context of a DApp, represent a physical good, or be a
digital collectible
* ERC-20: Fungible Ethereum Token spec
 All tokens are interchangeable, i.e., non-unique (like money)
 Divisible
* Examples: Binance, Tether, Uniswap, Chainlink, USDC
* ERC-721: Non-Fungible Ethereum Token spec
* Each token unique (like collectibles or title deeds)
* Examples: Cryptokitties, Ethereum Name Service (ENS)

* Any idea where these numbers (20, 721) come from?

* The number 20 simply refers to the 20t ERC that was posted by someone.
That person proposed a general interface for a fungible token.

®© Rensselaer
What is ERC?

 Stands for “Ethereum Request for Comments”

* Open and public mechanism inspired by the well-known IETF Request
for Comments (RFC)

* The mechanism for standardization of tokens
* So that one token can be traded for another in the Ethereum ecosystem

e ERC's are now called EIPs: Ethereum Improvement Proposals

* Because the majority of newcomers did not understand any difference
between EIPs and ERCs they were merged.

Rensselaer

An ERC-20 Token Example

Use a library such
as OpenZepplin’s
ERC.sol

https://github.com/OpenZe
ppelin/openzeppelin-
contracts/blob/master/con
tracts/token/ERC20/ERC20.
sol

The constructor takes a name and a
symbol.

The visibility specifier for mint

defines the function as internal,
which means only derived
contracts can call this.

Sets the totalSupply.

Updates the balances

1 pragma solidity ~0.8.4;
2
3 // The ERC-20 spec is implemented in ERC20. sol, by importing
4 // it, we avoid duplicating a great deal of code here
5 import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
6
7 // 0OshaniToken is meant to be a very simple example of an ERC20 token.
8 // In the example all tokens are pre-assigned to the creator.
9 // Can later distribute these tokens using “transfer® and other ERC20 functions
10 contract OshaniToken is ERC20 {
11
12 // "super constructor" for OshaniToken, which calls on ERC20 contructor
13 // passing in token name = "Oshani Token" and symbol = "OSH";
\li*c
15 onstructor() ERC20("Oshani Token", "OSH") {
16
17 ‘ // Mints 1,000 tokens to your wallet's address
8 » mint(msg.sender, 1000);
19 ‘ b
20 // so much more can be done here.
21}

a7

®) Rensselaer
Minting Tokens

* Fixed Supply Tokens
* The mint function is callable only in the constructor once.

* Once the token is deployed, there is no more access to the internal mint
functionality, the supply of tokens remains fixed.

* Variable Supply Tokens
* Possible to mint more tokens after the contract is deployed.

Rensselaer

Token is Minted!

™ Etherscan

Ropsten Testnet Network

Token Oshani Token ®

Overview [ERC-20]
Max Total Supply:

Holders: 1

[FILTERED BY TOKEN HOLDER
0xaf23c650f36a6614d043f67d7153120c5efa84e7
Transfers

Contract

Atotal of 1 transaction found

Txn Hash

@ 0x98d960ca3247fa783fa... 0x60806040

0.000000000000001 OSH (i

Method ©

Age

5 mins ago

All Filters ~ ~

Profile Summary

Contract:

Decimals:

BALANCE
0.000000000000001 OSH

From

0x000000000000000000... IN

Search by Address / Txn Hash / Block / Token / Ens

Home Blockchain Tokens ~ Misc ~

0xFC21D49A71bD874cD97138bF1d55d7CC1513A3B1

18
0xaf23c650136a6614d043167d715 x a
First < Page 1 of 1 > Last
To Quantity
0xaf23c650136a6614d04... 0.000000000000001

[Download CSV Export &,]

- Atoken is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.

https://ropsten.etherscan.io/token/0xFC21D49A7fbD874cD97138bF1d55d7CC1513A3B1?a=0xaf23c650f36a6614d043f67d7153120¢5efa84e7

©) Rensselaer
Import into Your Wallet

You can specify the contract address and import
the tokens to Metamask.

Now ready for transactions!

. ' @ Ropsten Test Network v
v

< Account1/OSH

0.000000000000001
OSH

Send

50

® Rensselaer
Token Contracts

A token can be created (minted) by a smart contract

* The minting process follows a set of rules specified in ERC-X (or EIP-X)
standard, that dictates what it means to create, transfer, and keep
track of account balances

* To purchase tokens, a buyer sends Ether to the smart contract
affiliated with that token

* There are many online marketplaces and exchanges to buy and sell
tokens

* For e.g., opensea.io is for the exchange of NFTs

® Rensselaer
Non Fungible Tokens (NFT) The first big NFT!

j CryptoKitties

Happy Lunar New Year - Year of the Cat / Rabbit

(S o TS 7 N v
A VY | 2 S [| - = / =
2 Buy & sell cats with our community @ Crack puzzles alongside other players
Get your own Kitty

&5 Create collections & earn rewards ® Chase limited edition Fancy cats

& Breed adorable cats & unlock rare traits 63 Play games in the KittyVerse

https://www.cryptokitties.co 52

® Rensselaer
Cryptokitties are Based on Dutch Auctions

The “Buy it Now” price is initially set at the largest value.
As time goes on, the “Buy it Now” price is lowered
As soon as someone is ready to buy it, they announce their bid and win.

Buy now price

0.0028

(e T
(e JA&

I

3.5/4 purrfect

0.005 0.002

53

Example: https://solidity-by-example.org/app/dutch-auction

https://solidity-by-example.org/app/dutch-auction

@) Rensselaer
What if | want to create an NFT?

* ERC-721 further extends the ERC-20 token specification by enabling the
definition of unique, non-fungible tokens

* The primary difference is EC-721’s addition of the following:
* Unique token identification number (tokenlID)

 External (off-chain) link that references a collection of data (metadata) that
represents the unique properties of this token (tokenURI)

» Several token builder tools allow for web-based creation of ERC-721 tokens
without coding, e.g., opensea.io
* The NFT is given a name and description with a means to set the offering price of

the NFT along with options of blockchain platforms in which it will be deployed
and run.

* For example, if Ethereum is its destination, it will auto-generate the Solidity
smart contract and compile and deploy it with a simple push of a button.

* Then the NFT appears as a web page and enables you to “mint” a new token or
transfer ownership to another user’s address.

Algorand

o) Rensselaer
Algorand’s Founder

* Silvio Micali
* Professor MIT
e Turing Award, Godel Prize
* Scientific Contributions:
* Digital Signatures
* Probabilistic Encryption
* Zero-Knowledge Proofs

* Verifiable Random Functions
* Many other primitives of modern cryptography...

* The consensus mechanism used in Algorand is
his brainchild:

» Sortition: select a random small constant-size
committee that proposes blocks and votes on

blocks
 Scales with millions of participation nodes!

56

© Rensselaer
Pure Proof of Stake

. > .
Block proposal: Soft vote: Certify vote: The new block is
Accounts Committee votes A separate committee appended to the
propose new on proposals and votes to certify the blockchain
blocks to the filters down toone block

network

® Rensselaer
Why Algorand?

* Block time < 4 seconds
 Ethereum = 12 seconds
* Bitcoin = 10 minutes

* Immediate finality, i.e., never forks!
* Once a block is added, it can never be removed
* Compare with Ethereum where Coinbase waits 14 blocks, i.e., about 3 minutes

e High throughput: 6000 transactions per second
* Compare with Ethereum, which is < 30 transactions per second

* Easy to develop
* No need to develop smart contracts in many cases (ASA, NFT, atomic transfers)
* Smart contract languages use python
 Official SDK for python, Javascript, Java and Go
e Community SDK for dot Net

) Rensselaer
Algorand Sustainability

Energy per transaction

*Algorand transactions are 100% final

103
2x Burj Khalifa

2000

“Permission-less” is not

Eiffel Tower “ cL: ”
1500 Responsibility-less
d = Paper sheet thickness

1000 _
500 102

A 105

0 ’
Bitcoin Ethereum Algorand
[kWh/tx]

Source: https://prismic-io.s3.amazonaws.com/algorandfoundationv2/d5407f96-8e7d-4465-9656-
2abb558850a9 Proof+of+Stake+Blockchain+Efficiency+Framework.pdf 59

® Rensselaer
Algorand Standard Assets (ASA)

* Algo = native token * Comparison with Ethereum
e ASA = custom token * Similar to ERC-20/ ERC-721
« Anyone can create their own ASA * Lower transaction fee
« Same transaction fee as the Algo * No smart contract

* Same throughput/latency
* Examples: reward/loyalty token,
USDC, NFT ..

* Create your own token in a few
seconds at:

* https://app.algodesk.io

https://app.algodesk.io/

1SSEIACT

NFT = ASA with supply of just one!

A\IgoExplorer E—— N
Algorand Blockchain Explorer
e
A $0.27(0.64 NFTs Assets Apps
NFT Overview
CGF #4278

eeeeeee

Owner

66666666

cccccccc

Properties (8)

Eyes|Nerd Beak|Bored Body|LightBlue Tattoo|Nome Neck | None

Clothing | Brown Hoodie Background |Orange Hat | None

https://algoexplorer.io/asset/584166630

Developer portal contains
everything you need!

https://developer.algorand.org

Websites to create NFTs just in
1-click

https://arcminter.daotools.org

Https://arc3.xyz

61

https://developer.algorand.org/
https://arcminter.daotools.org/
https://arc3.xyz/

Rensselaer

Algorand Networks

Protocol Version - Future

Access the newest protocol-
level features.

MainNet

Protocol Version - Current

Test applications with realistic network
conditions prior to deploying them to
MainNet.

The Algorand MainNet, where the
Algo and real assets are traded.

Private Networks

Create an isolated development environment using any available protocol
version.

62

v Rensselaer
Algorand Nodes

* Non-Relay Nodes
 Participation Nodes:

* Participate in the PPoS consensus (verify the blocks and the transactions to ensure the
network is safe)

* Light Configuration: store just the latest 1000 blocks (~20 GB)

* Recommended Specs: 8vCPU, 16GB RAM, 500 GB, 1GBPS broadband
e Archival Nodes:

* Store all the chain since the genesis block (~1TB)

* Required for indexer, which is used to query the blockchain

* Relay Nodes

 Communication routing to a set of connected Non-Relay Nodes
Connect both with Non-Relay Nodes and Relay Nodes
Route blocks to all connected Non-Relay Nodes

Highly efficient communication paths, reducing communication hops

Recommended Specs: 16 vCPU, 32 GB RAM, 3GB SSD, 30 TB/month egress, 1
GBPS broadband

® Rensselaer
Algorand Network Topology

Participation Nodes:

~200 unique accounts

Permissionless

participating 0“7
~1.5B ALGOs online
* N

Relay Nodes:

~120 nodes

Default relays chosen by the
Algorand foundation
Anyone can relay, but nodes
must point to it

R

® Rensselaer
Algorand Nodes

* Running a node:
* Install the Algod (Algorand Deamon)
* Choose a network (MainNet, TestNet, BetaNet, PrivateNet)
 Start & Sync with the network

* Interacting with nodes:
 CLI utilities: goal, kmd and algokey
* REST APl interface: algod V2, kmd, indexer
» Algorand SDKs: JavaScript, Python, Java, Go

@) Rensselaer
Software

e algod — Algorand Daemon
* The node software that connects with the rest of the network
 HTTP endpoints for submitting transactions and reading state

* kmmd — Key Management Daemon
* Responsible for the wallet management
* Manages account keys
 HTTP endpoints for managing and querying local accounts

* indexer
» Software that can run alongside an archival node
» Saves blockchain state in SQL database

* Provides HTTP endpoints specifically for querying on-chain data (for e.g., to
guery the balance of a particular account

® Rensselaer

Interacting with Nodes

e goal
* Command-line utility for interacting with algod and kmd programmatically

* SDKs
* Leverage HTTP endpoints to interact with algod and kmd

 Essentially, programmable wrappers
* Python SDK, Javascript SDK, Java SDK

* Public API services
* Services that expose HTTP endpoints for Algorand nodes publicly

e Useful when you don’t want to run your own node

®) Rensselaer
Algorand Wallets

-~
WA WalletConnect

nnnnn

Mobile Wallet + Wallet Connect

<\
/\! pera

Pera Wallet

@ Document — Mozilla Firefox

I
o
m X

O & ny jev.myalgo.com/bridge.

https://testwebsite com
Connect to My Algo

Choose Account(s)

Bob Wallet {zsko . oBAQ)

|

MyAlgo Wallet

ALGOSIGNER

Settings

€ Network Configuration - beta
Display Name

| Sandbox

Network ID

| sandnet-v1

Network Algod URL

| http://localhost:4001

Network Indexer URL

| http://localhost:8980

Network Headers

| Algod:{X-Algo-API-Token

BT

Algosigner

70

® Rensselaer
Algorand Explorers Z

apestyle.algo

* AlgoExplorer
* Goalseeker
* NFTExplorer

* Algorand Ballet - Algorand accounts’ 2D
graphs.

* Algorand Multiverse - Algorand accounts’ 3D
graphs.

* Algoscan - Algoscan is a Blockchain Explorer
and Analytics Platform. Built on top of the
Algorand Network.

* Asalytic - Analyze the Algorand NFT space.

* Dappflow - Algorand Private Network Explorer Algorand Multiverse
(supports Sandbox in localhost). at https://algo3d.live

.

o) Rensselaer
Algorand Transactions

* Transactions are the core element of blocks, which define the evolution of
distributed ledger state.

* There are six transaction types in the Algorand Protocol:

1.
2.
3.

Payment (sends Algos from one account to another)

Key Registration (register an account to participate in Algorand Consensus).

Asset Configuration (create an asset, modify certain parameters of an asset, or destroy an
asset)

Asset Transfer (receive a specific type of Algorand Standard Asset, transfer an Algorand
Standard asset, or revoke an Algorand Standard Asset from a specific account)

Asset Freeze (asset receiver address losing or being granted the ability to send or receive
the frozen asset)

Application Call (Smart contract logic identified by an Appld and an OnComplete method.
The Appld specifies which App to call and the OnComplete method is used in the contract

to determine what branch of logic to execute.)

* These six transaction types can be specified in particular ways that result in more
granular perceived transaction types.

v Rensselaer
Example Algorand Transaction

1

"txn": {
"amt": 5000000,
"fee": 1000,
"fv'": 6000000,
"gen": "mainnet-v1.0",
"gh": "wGHE2Pwdvd7S12BL5Fa0OP20EGYesN73ktiClqzkkit8=",
"1v": 6001000,
"note": "SGVsbG8gV29yhGQ=",
"rcv": "GD64YIY3TWGDMCNPP553DZPPR6LDUSFQOIJVFDPPXWEG3FVOJCCDBBHUSA",
"snd": "EW64GC6F24M7NDSC5R3ES4AYUVE3ZXXNMARIJHDCCCLIHZUG6TBEOC7XRSBG4A" ,
"type": "pay" <

5

Transaction that sends 5
Algos from one account
to another on MainNet.

73

Rensselaer
Example Algorand Transaction

1
"txn": §
"apar": {
"am": "gXHjtDdtVpY7IKwIYsIWdCSrnUyRsX4jr3ihzQ2U9CQ=",
"an": "My New Coin",

" "

au": "developer.algorand.org",
“c": "EW64GC6F24M7NDSC5R3ES4YUVE3ZXXNMARIJHDCCCLIHZU6TBEOC7XRSBG4A ",

"dc": 2, <
"f": "EW64GC6F24M7NDSC5R3ESAYUVE3ZXXNMARIHDCCCLIHZU6TBEOC7XRSBGA" ,
"m": "EW64GC6F24M7NDSC5R3ESAYUVE3ZXXNMARIHDCCCLIHZU6TBEOC7XRSBGA ",
"' "EW64GC6F24M7NDSC5R3ESAYUVE3ZXXNMARIHDCCCLIHZU6TBEOC7XRSBG4" ,

"t": 50000000,
"un": "MNC"
5
"fee": 1000,
"fv": 6000000,
"gh": "SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=",
"lv": 6001000,

"snd": "EW64GC6F24M7NDSC5R3ESAYUVE3ZXXNMARIHDCCCLIHZU6TBEOC7XRSBGA " ,
Il.typell : Ilqcfgll 4

Asset parameters struct that
includes all the initial
configurations for the asset

Asset creation
transaction

74

Rensselaer
Multi-Signature Transactions in Algorand

1
"msig": {
"subsig": [
{
"pk": "SYGHTA2DR5DYFWJE6D4T34PAAWGCG7ITNMY4AVIGEDUVRMX7NGAKTA2WMDA"
i
{
"pk": "VBDMPQACQCH5M6SBXKQXRWQIL7QSRAFH2UI6EYI4RCISB2T2ZYF2IDHZ2Q"
5
{
"pk": "W3KONPXCGFNUGXGDCOCQYVD64KZOLUMHZ7BNM2ZBK5FSSARRDEXINLYHPI "
%
1,
"thx": 2,
A
5
"txn": §
"amt": 10000000,
"fee": 1000,
"fv": 4694301,
"gen": "testnet-v1.0",
"gh": "SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=",
"1v": 4695301,
"rcv": "QC7XT7QU7X6IHNRIZBR67RBMKCAPH67PCSXALYHAQKVSQ7DQZ32PG5HSVQ" ,
"snd": "GQ3QPLJILAVKVGQCHPXT5UZTNZIJAGVIPXUHCILRWQMFRVLAREVW7LI3FGY",
"type": "pay"
%
%

75

s
7S

Q

® Rensselaer

Algorand Addresses

Hidden

Public Key

SHA 512/256

32-|q'ytes
1

Private Key

32-bytes

A 4

Public Key Hash

32-bytes

Checksum

OO

Concat

Visible

Base32

U, {

—P

Algorand Address

Dev Toolsglnterface

76

¥ Rensselaer
Algorand Accounts

* Accounts are entities on the Algorand blockchain associated with specific

on-chain local state.

* An Algorand Address is the unique identifier for an Algorand Account.

Existing Algorand account
1 and valid address.

Algorand Blockchain

Account 1
Address: PLDQ57WWG7ECNUQ...
Balance: 500000000
Status: Online

Algorand Address

5703WBBRJAXXEMAT..."""

Account 1 sends Algos
to valid address

Transaction
From: PLDQ57...

To: 5703WB...---....... | | g
) .Amount: 100000000
Fee: 1000

New account on
Algorand
Algorand Blockchain
/
Account 1

Address: PLDQ57WWG7ECNUQ...
Balance: 399999000
Status: Online

N [

Account 2

“"Address: 5703WBBRJAXXEMAT...

Balance: 100000000
Status: Offline

® Rensselaer
Smart Contracts

* Flat fee (0.001 ALGO) until congestion

* Turing complete language (TEAL)
* Hard-coded limitations to keep complexity in check

e Can read/write blockchain state and send transactions

® Rensselaer
Smart Contract Tech Stack in Algorand

 Algorand Virtual Machine (AVM)
* Running on every node
* Not compatible with Ethereum Virtual Machine

* Transaction Execution Approval Language (TEAL)
* Assembly-like language for writing smart contracts

* PyTeal, Beaker, and AlgoKit
e Python library and framework for writing Algorand smart contracts
» Ultimately compiles down to TEAL

@ Rensselaer
Algorand Virtual Machine (AVM)

e Available data

* Transaction information: sender, fee, amount
* Global variables: current round, latest timestamp

* The Algorand Virtual Machine is a Turing-complete secure execution
environment that runs on the Algorand consensus layer.

* AVM approves transactions’ effects if and only if:
* There is a single non-zero value on top of AVM’s stack

* AVM rejects transactions’ effects if and only if:
* There is a single zero (false) value on top of AVM'’s stack
* There are multiple values on the AVM'’s stack
* There is no value on the AVM’s stack

* The AVM runs on every node in the Algorand blockchain.
* |t contains a stack that evaluates smart contracts and smart signatures.

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

1T + 2 =3

STACK MACHINE

[...]
[...]
[...]
[...]
[...]

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

®+ 2 = 3

pushing -
first -
operand -,

STACK MACHINE

“opl 1

sﬁ\mo%
S\
%/ = \5 nSS aer
= (:
w4

How does the AVM work?

* Suppose we want the AVM to check the following assertion:

. "
.

.

pushing .-*" STACK MACHINE
second
operand ., | 2
1
[e o o]
[...]
[...]

83

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

132 =3

applying " STACK MACHINE

operator >
1
[...]
[...]
[...]

84

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

1T + 2 =3

STACK MACHINE
3

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

1 + 2 - @ hi

last

STACK MACHINE . operand

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

1+2@3

STACK MACHINE

. applying
- operator

87

® Rensselaer
How does the AVM work?

* Suppose we want the AVM to check the following assertion:

1 + 2 =3

STACK MACHINE

true

® Rensselaer
Transaction Execution Approval Language (TEAL)

* AVM interprets an assembler-like language called TEAL.
* TEAL can be thought of as syntactic sugar for AVM bytecode.
* TEAL programs are comprised of a set of operation codes (opcodes).

* These opcodes are used to implement the logic of smart contracts
and smart signatures.

* While it is possible to write TEAL directly, a developer may prefer to
use the PyTeal Python library, which provides a more familiar syntax.

89

AVM Architecture

APP IDs ARRAY

[e]: UInt64

[i]: UInt64

[7]: uInte4

TRANSACTION | APP ARG ARRAY
: [8]: UInté4/ Bytes
1. Sender 1
| [i]: UInt64/ Bytes
2. Receiver |
2o Fee | [15]: UInt64/ Bytes
4. FirstValid : ACCOUNT ARRAY
5. LastValid "
6. Amount 1 l6]: Bytes
7. Lease Il 1il: Bytes
8. Note :
9. TypeEnum 1 [3]: Bytes
10. - : ASSET ARRAY
1 [e]: uUIntes
|
| [i]: UInte4
TRANSACTION ARGS 1
I | [7]: vlntes
[e]: Bytes 1
|
[i]: Bytes 1
|
[255]: Bytes |
1
1
|
|
Stateless properties 1

APP GLOBAL K/V PAIRS

APP LOCAL K/V PAIRS

Max Key + Value size: 128 bytes

Stateful properties

1000 levels

List of opcodes in TEAL

PROGRAM

\

é STACK MACHINE

/

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

&&

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

txn Amount
int 42

txn Amount
int 77

&&

SCRATCH SPACE

[e]: UInt64 / Bytes

[i]: UInt64 / Bytes

[255]: UInt64 / Bytes

N
volatile
memory for

Processing

/
N— i

temp storage

@ Rensselaer

AVM vs EVM

Algorand Virtual Machine

Ethereum Virtual Machine

TURING COMPLETENESS

YES

YES

EXECUTION SPEED

~ 4.5 sec
regardless dApp complexity

> 20 sec
depends on dApp complexity

ENERGY EFFICIENCY

~107 [kWh/txn]
all final

~102 [kWh/txn]
not all final

EXECUTION COSTS

Flat Fee for Smart Contract Calls
and Inner Transactions

Depends on dApp complexity

INTEROPERABILITY

native interoperability
ASA, AT, MultiSig, RekeyTo...

user defined solutions / standards

EFFECTS FINALITY

instant

~ 6 blocks

MATHEMATICAL PRECISION

512 bits

256 bits

PROGRAMMABILITY

TEAL, PyTEAL, Reach, ...

Solidity, Viper, Reach, ...

b1

® Rensselaer

Algorand Programming Ecosystem

|
, IDE I
: [TEAL J [PyTeal] [Reach Lang J [Languages...] :
I |
e et e el B il el i
I COMPILERS ' I
! [TEAL] [TEAL] [TEAL] :
|
S e s s s s 1
I NODE , , .
|
: [AVM Bytecode] [AVM Bytecode] [AVM Bytecode] [AVM Bytecode } :
' 1 [

Algorand Virtual Machine (AVM)

92

v Rensselaer

Application State

* Global Storage

64 key/value pairs
Limited to 128 bytes per key/value pair
Any app on-chain can read it

Minimum Balance Requirement (MBR) funded during the
app creation process by the smart contract creator

* Proportional to the amount of storage used

* Local Storage

16 key/value pairs per account
Limited to 128 bytes per key/value pair
It can be read by any app on-chain
MBR funded during opt-in by end-user
* Proportional to the amount of storage used

Accounts must opt-in before the end-user uses the
application

Can be cleared by the end-user at any time
* So, do not use local storage for any mission critical data

* Box Storage
* “Unlimited” named storage segments

* Flexible in terms of types of data and
how much data you can store

* Up to 32kb per box

* Can only be read by the app that created
the box

* MBR funded during box creation by
contract account

* Proportional to box size

@ Rensselaer
Transactions

* An application can send any transaction type
* This includes application calls

* An application can send up to 16 transactions
* Inner transactions are atomic with the outer transactions
* One failure will cause all to fail

* Every application has its own contract address it can send
transactions from

@) Rensselaer
Atomic Transfers / Group Transactions

1 Algo

20 USDC
—

Alice Bob

This is a transaction

Any transaction can be part of atomic transfer, which can include
up to 16 transactions.
Either all transactions succeed or all transactions fail!

95

® Rensselaer
Creating a Smart Contract with TEAL

* Suppose we want to develop a Smart Contract that
approves a transaction if and only if:
1. Is “Payment” type transaction;
The receiver is a specific “ADDR”;
Fees are less or equal to “1000 microALGO”;
First argument is equal to “bianconiglio”;
Amount is equal to “42 ALGO”;
6. Or amount is equal to “77 ALGO”;

* To translate those 6 semantically defined example
conditions into TEAL, we need to check which
transaction fields are going to be controlled by Smart
Signature’s logic.

e WwN

PROGRAM

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

&&

arg 0

byte base64 "YmlhbmNvbmlnbGlv"

&&

txn Amount
int 42

txn Amount
int 77

[

&&

@ Rensselaer
Translating Conditions into TEAL

1. is “Payment” type transaction;

txn TypeEnum 1
int 1

97

® Rensselaer
Translating Conditions into TEAL

2. the receiver is a specific “ADDR”;

txn Receiver 2

addr AOC7...

98

sﬁ\um%
S7EEE\7
7 |
%/ == \$ HSS %r
==l (:
s

Translating Conditions into TEAL

3. fees are less or equal to “1000 microALGO”;

99

® Rensselaer
Translating Conditions into TEAL

4. first argument is equal to “bianconiglio”;

arg push Args[N] value to stack by index

arg 0 4
byte base64 "YmlhbmNvbmlnbGlv"

100

® Rensselaer
Translating Conditions into TEAL

5. amount is equal to “77 ALGO”;

txn Amount 6
int 77000000

101

® Rensselaer
Translating Conditions into TEAL

6. or amount is equal to “42 ALGO”;

required uint64 amt" The total amount to be sent in microAlgos.

txn Amount S
int 42000000

102

® Rensselaer

Logic Connectors

This is probably the most complex phase in TEAL programming
because you need to keep in mind the state of the stack.

txn TypeEnum

STACK

int 1 1
txn Receiver

addr AOC7... 2
txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv" ll
txn Amount

int 42000000 5

txn Amount
int 77000000

fp— p— p— == —
L] L] L] L] L]
L] L] L] L] L]
[(S [[[

This phase is drastically
simplified with the use of
PyTEAL, Python binding for
TEAL, which automatically
performs this concatenation,
saving us the effort of thinking
about the state of the stack

103

Rensselaer
Execution — Step 1

txn TypeEnum
int 1

txn Receiver
addr AOC7...
= STACK
&&

txn Fee
int 1000 1

<=

arg 0
byte base64 "YmlhbmNvbmlnbGlv"

&&

i
i i
i
i

txn Amount
int 42000000

txn Amount
int 77000000

I
&&

104

Rensselaer
Execution — Step 2

txn TypeEnum

int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

I
&&

STACK

105

Rensselaer
Execution — Step 3

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

I
&&

STACK

106

® Rensselaer
Execution —Step 4

107

Rensselaer
Execution — Step 5

txn TypeEnum
int 1

txn Receiver

addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

I
&&

STACK

AOCT...

108

Rensselaer
Execution — Step 6

txn TypeEnum
int 1

txn Receiver

addr AOC7...

&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

I
&&

STACK

AOCT...

AOCT...

109

Rensselaer
Execution — Step 7

txn TypeEnum
int 1

txn Receiver
addr AOC7...

&&

txn Fee

int 1000

<=

arg

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

Il
&&

STACK

AOCT...

AOCT...

[...]

[...]

110

® Rensselaer
Execution — Step 8

111

Rensselaer
Execution — Step 9

txn TypeEnum
int 1

txn Receiver

addr AOC7...

= STACK
&&

txn Fee

int 1000 1

<=

arg 0 1

byte base64 "YmlhbmNvbmlnbGlv"
&& [e o o]
&&

txn Amount []
int 42000000 OO0 C
txn Amount [e o o]
int 77000000

[
&&

112

® Rensselaer
Execution — Step 10

STACK

113

Rensselaer
Execution — Step 11

txn TypeEnum
int 1

txn Receiver
addr AOC7...

&&

txn Fee

STACK

int 1000

<=

arg 6

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount

int 42000000

txn Amount

int 77000000

I
&&

1000

114

Rensselaer
Execution — Step 12

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn _Fee

STACK

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount

int 42000000

txn Amount

int 77000000

I
&&

1000

1000

[...]

[...]

115

Rensselaer
Execution — Step 13

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

STACK

<=

1000

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

txn Amount

int 42000000

txn Amount

int 77000000

I
&&

1000

116

® Rensselaer
Execution — Step 14

117

Rensselaer
Execution — Step 15

txn TypeEnum
int 1

txn Receiver
addr AOC7...
== STACK
&&

txn Fee
int 1000 bianconiglio

<=

arg 0 1
byte base64 "YmlhbmNvbmlnbGlv"
&& 1
&&

txn Amount

int 42000000 [® 0o]
txn Amount [. e e]
int 77000000

[l
&&

118

Rensselaer
Execution — Step 16

txn TypeEnum
int 1

txn Receiver
addr AOC7...
== STACK
&&

txn Fee
int 1000 bianconiglio

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&& 1
&&

txn Amount
int 42000000 1
txn Amount [..]
int 77000000

I
&&

bianconiglio

119

Rensselaer

Execution — Step 17

txn TypeEnum
int 1

txn Receiver

addr AOC7...

&&

txn Fee

int 1000

<=

arg 0

| byte base64 "YmlhbmNvbmlnbGlv"

STACK

bianconiglio

bianconiglio

&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

I
&&

[...]

120

® Rensselaer
Execution — Step 18

121

Rensselaer
Execution — Step 19

txn TypeEnum
int 1

txn Receiver
addr AOC7...
== STACK
&&

txn Fee
int 1000 1

<=

arg 0 1
byte base64 "YmlhbmNvbmlnbGlv"
&& 1
&&

txn Amount

int 42000000 [CRCR]
txn Amount [e e]
int 77000000
[l

&&

122

® Rensselaer
Execution — Step 20

123

Rensselaer
Execution — Step 21

txn TypeEnum
int 1

txn Receiver

addr AOC7...

= STACK
&&

txn Fee

int 1000 1

<=

arg 0 1

byte base64 "YmlhbmNvbmlnbGlv"
&& [O..]
&&

txn Amount

int 42000000 [L]]
txn Amount [..]
int 77000000

[
&&

124

® Rensselaer
Execution — Step 22

125

Rensselaer
Execution — Step 23

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"
&&

&&

STACK

42000000

txn Amount

int 42000000

txn Amount
int 77000000

I
&&

126

© Rensselaer
Execution — Step 24

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"

&&
&&
txn Amount

STACK

42000000

42000000

int 42000000

txn Amount
int 77000000

I
&&

127

© Rensselaer
Execution — Step 25

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 6

byte base64 "YmlhbmNvbmlnbGlv"

&&

&&

txn Amount
int 42000000

STACK

42000000

42000000

txn Amount
int 77000000

[
&&

128

® Rensselaer
Execution — Step 26

129

® Rensselaer
Execution — Step 27

130

© Rensselaer
Execution — Step 28

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"

&&

&&

txn Amount
int 42000000

txn Amount

STACK

77000000

42000000

1

1

int 77000000

I
&&

131

© Rensselaer
Execution — Step 29

txn TypeEnum
int 1

txn Receiver
addr AOC7...
&&

txn Fee

int 1000

<=

arg 0

byte base64 "YmlhbmNvbmlnbGlv"

&&

&&

txn Amount
int 42000000
txn Amount
int 77000000

STACK

77000000

42000000

1

1

I
&&

132

® Rensselaer
Execution — Step 30

133

Rensselaer
Execution — Step 31

txn TypeEnum
int 1

txn Receiver
addr AOC7...
— STACK
&&

txn Fee
int 1000 0
<=
arg 0 1
byte base64 "YmlhbmNvbmlnbGlv"
&& 1
&&

txn Amount

int 42000000 [RO]
txn Amount [.]
int 77000000

L
&&

134

® Rensselaer
Execution — Step 32

135

Rensselaer
Execution — Step 33

txn TypeEnum
int 1

txn Receiver

addr AOC7...

= STACK
&&

txn Fee

int 1000 1

<=

arg 0 1

byte base64 "YmlhbmNvbmlnbGlv"
&& [e o o]
&&

txn Amount

int 42000000 [R]
txn Amount [v]
int 77000000

Ll
&&

136

® Rensselaer
Execution — Step 34

STACK

137

® Rensselaer
Conclusion

txn TypeEnum

int 1

txn Receiver

addr AOC7...

&&

txn Fee

int 1000

<=

arg 0

byte base64 "

STACK

[— [— — [—
°] (] (]
L] L] . L]
°] (] .
Tl Tl Tl Tl

True

138

®© Rensselaer

PyTEAL

* PyTEAL is a Python language binding for Algorand Virtual Machine.

* Allows Smart Contracts and Smart Signatures to be written in Python

and then compiled to TEAL

e PyTEAL expressions represent an abstract syntax tree (AST).

* Basically, use Python code to produce TEAL code.

Compile with goal CLI

PyTeal Compile with PyTeal | TEAL Source

=
Ll

Expressions o Code Compile with algod REST API

B

>

TEAL
Bytecode

Deploy as smart contract

.

L

Algorand
Blockchain

@) Rensselaer
Algorand Resources

* AlgoDevs on Youtube: https://www.youtube.com/@algodevs

 ACE: https://www.algorand.foundation/ace-learning-resources

e Algokit: https://github.com/algorandfoundation/algokit-
cli/blob/main/docs/tutorials/intro.md

140

https://www.youtube.com/@algodevs

v Rensselaer

Multidisciplinary Educational Global Alliance for Algorand Center of Excellence

- E"'n mega-ace.org
7 7 'f% l,‘gj /p

[m] 7 [m]

0

141

Smart Contract Research

0 Rensselaer
Swarm Contracts: Smart Contracts in Robotic
Swa r m CO nt ra Cts Swarms with Varying Behavior; Jonathan Grey,
Isuru Godage, Oshani Seneviratne. IEEE
Blockchain Conference 2020.

 Allow for heterogenous and multi-stakeholder Potential Applications
swarms T i
* Robots, Al services, or even humans :

* Create a system which is more robust through
decentralization and voluntarism

* Generalizable to different applications

Disaster recovery

* Incentivizes cooperative behavior over long
term

* Disincentivizes adversarial behavior over long
term

Pooling Resources for
Scientific Endeavors'**

@ Rensselaer
Swarm Contract Features

Agents

Public Information Functions

Set by contract creator: * Accept
e Adjudicators Accept the contract by paying
* Contract reward Insurance

Worker » Job data (will vary depending * Adjudicate

on application) Submit a judgment, final judgment

e Deadline pays out contract
Set later: * Revoke
* Acceptor If no one accepts, reclaim funds

* Judgments e Surrender

Back out of contract, for a price

- Agent Sub Types: Fair Adversarial
Adjudicator 144

©) Rensselaer
Sequence Diagram

= ¥h b &

Charger Chief Blockchain Worker Adjudicator 1 Adjudicator 2 Adjudicator 3

Charger Chief Blockchain Worker Adjudicator 1 Adjudicator 2 Adjudicator 3

145

® Rensselaer . _
Swarm Contract Simulation

146

® Rensselaer
Swarm Contract Performance

Agent Subtype

" X Adversaria
| =

: O
r— air
t

[1v]

wv

c

©

'— .

w

c

S

%]

[1v]

w

| =

©

-

w

c

S

9]

1+

w

c

1]

| .

-

Profit per Transaction 147

v Rensselaer |
Collecting Data for Decentralized

Knowledge Graph with Smart

Contracts

Ethereum
Contracts

Blockchain

Accepting
Publish via street view 7 Map
Users API
lient App

C
) Interaction R E on ROS
Master
S
’@‘*

c_,e“é Turtlebot with the
360 camera

sequences

Interaction

\ 4

Android Sending commands by the users ‘B
- App g

Retrieving image

,
Image blocks

Decentralized Framework for
Collection and Secure Storage of
Google Street View Data: Case
Study; Sanjaya Mallikarachchi,
Bonnie Ho, lyad Kanj, Oshani
Seneviratne and Isuru Godage;
IEEE GlobCon2023 and
ICCAR2023

Google

Private
Blockchain

BG-6-6-8

toring as Street View

148

®© Rensselaer

Private Ledger Based Store for Storing Image
Sequences

Legend
P.D. - Pixel Data

' - ' T.S. — Timestamp
PD TS. G.C. PD TS. G.C. PD TS. G.C. P 1S; - GE .
| | [l G.C. - GPS Coordinate

.l’i ¢, C’/ﬁ &

Prev. Prev. Prev.
Hash Hash Hash

Hash—T Hash — 1 Hash — 1 Hash

* Each hash is an identifier of the single points of data the agent collects, and they
form the basis of identities in a decentralized knowledge graph.

* We are expanding this to include knowledge about Points of Interest to create a
comprehensive multi-modal decentralized knowledge graph.

149

® Rensselaer
Application — Building Indoor Maps

Top-level generated map Lidar Map

150

On the Web, nobody knows you are a dog! On the Blockchain, nobody knows you are an Al

151

®© Rensselaer

Using Smart Contracts in Data and Computation Heavy Applications

EEG

3

A
Heart Rate

Blood Oxygen Respiration

(@
e a D)
Medication @ Blood Glucose
Y

Gait

N
®Tcmpcralurc

For example, decentralized health
applications may need data from various
sources with complex schemas where the
data streams are fast changing.

.% Limitations in smart contract programming languages

Lack of support for complex
data structures

Control structures incur very
high gas costs

152

Insi

Exec

Result

ghts

| S—

>

ution

v Rensselaer
Read-Execute-Transact-Erase-Loop
(RETEL)

Register
— EHR ' Users —™ BlockloT

Deploy/Run
Contracts

Ether}um Sid{chain

<

)

Executable
Code

RETEL
[—> Erase }
Transact Read
t— Execute <—J

BlockloT-RETEL: Blockchain and loT Based
Read-Execute-Transact-Erase-Loop
Environment for Integrating Personal Health
Data; Manan Shukla, Jianjing Lin, Oshani
Seneviratne. IEEE Blockchain Conference 2021.

Read: the high-level python commands for
executing smart contract code

Execute/ Transact: execute the commands,
and input and output history of the
execution flow is provided through the
RETEL Interpreter

Erase: the python interpretation of the
solidity smart contract is deleted in
preparation for the next smart contract
execution

Loop: the interpreter will then iterate
towards the next smart contract -

® Rensselaer
Incentivized Accountable

Research Data Sharing Ecosystem

Goals:

Handle
“Researcher’s
Dilemma”

Reward
Reproducible
Research and Peer
Verification

Tokenization of
Rewards

Accountable Bench-to-Bedside Data-
Sharing Mechanism for Researchers;
Oshani Seneviratne, Deborah McGuinness;
Transactions on Social Computing, 2023.

Bench-to-Bedside Biomedical Research Scenario:

Data Standardization &

S
S
ll

Hypothesis &
Study Design

C
O//@ [/
& O

Research Study

Peer-Reviewed

Clinical Application |

Research Data

® Rensselaer
Use Case: COVID-19 National Collaboration (N3C)

——1. Submit Data Access Requcst—l

2. Evaluate Smart ‘ Data Access
{ Data Users] Contract Policy Committee

5. Access Data

Data Store

A

A

Blockchain 3. Route Request

——4. Send Access Tokons«[Data Contributors J

e Data contributors are rewarded
for their contributions with
“data credits” NFT token.

e Data users must use the data for
research purposes.

e The N3C Data Access
Committee reviews data access
requests.

* We captured these usage
requirements and data credits
generation in smart contracts.

158

) Rensselaer
. Semantics-based Framework for
Se mantics- ba Sed F ramewo rk fO r Incentivized Research Data Sharing;

Kacy Adams, Deborah McGuinness,

Incentivized Research Data Sharing Oshani Seneviratne; FLAIRS'23.

rov:activity—p- dso:researcheractivity

- . nlyDataSh nlyDat. k
sio:'is about' exactly 1 dso:researchartifact SR SRR s
dso:answerrequest dso:submitrequest
dso:hasdatasharer exactly 1 dso:researcher g q
dso:sharedata dso:receivedata
dso:hasdataseeker exactly 1 dso:researcher
dso:reportpolicyviolation dso:reportreuse
dso:hasdatarequest exactly 1
dso:datarequest dso:submitreview dso:submitreview
dso:hascollaborationstate
' Y
1."awaiting data request" | 2. "awaiting data request approval" 3. "awaiting data share confirm"
dso:collaborationstate}

4. "awaiting data receive confirm" | 5. "awaiting reuse report" | 6. "awaiting reviews" | 7. "contract destroyed"

Data Sharing Ontology 159

) Rensselaer

Semantics-based Framework for Incentivized

Research Data Sharing (contd.)

dso:research-
artifact

sio:'is property
of' exactly 1
aio:researcher

sio:'is associated
with’ min 1
aio:researcher

dso:hasformat
min 1 xsd:string

fiso:hasdescription
exactly 1
xsd:string

dso:affiliated-
institutions min
1 xsd:string

dso:intendeduse
min 1 xsd:string

sio:'is cited by’
some
alo:publicationusing

researchartifact

dso:communicati-
onscore

dso:timeliness-
score

sio:'has creator’
min 1
aio:researcher

dso:datareprodu-
cibility

dso:hasDOI
exactly 1
xsd:string

dso:dataverifi-
ability

fiso:hasdescription
exactly 1

sio:cites min 1
aio:'research
artifact’

xsd:string

Data Sharing Template

Addresses the following
competency questions:

Q1: What does the data seeker
intend to use the data for?

Q2. Has the data exchanged hands
between the collaborating
researchers?

Q3. Which publication by the data
seeker uses the shared dataset?
Q4. How many researchers have
cited a dataset listed on the
protocol?

Q5. Why has a researcher left a
specific review?

160

: Rensse]aer . Assessing Scientific Contributions in
Rewarding Reproducible Research patasharing spaces; kacy adarms,

Fernando Spadea, Conor Flynn,

W|th the SCIENCE Index Oshani Seneviratne; Sci-K'23.

SCIENCE * Mechanism to reward researchers for their

Capability-based data contributions

Intention-centric * Supplements the h-index

Experiment-oriented * To overcome ’_che “cold-start” problem in
our data-sharing dApp, we bootstrapped

Networked the SCIENCE-index with:

Collaborative * Publication data from the Microsoft Academic

. Graph
Expression

e Data citations from DataCite

®© Rensselaer
Questions?

Please feel free to email me at senevo@rpi.edu

Twitter: @oshaniws
LinkedIn: https://www.linkedin.com/in/oshani

162

mailto:senevo@rpi.edu
https://www.linkedin.com/in/oshani

